
www.manaraa.com

Building a Computer Program Grader

Don Colton, Leslie Fife, Randy Winters, Jim Nilson, Kurt Booth
School of Computing

Brigham Young University Hawaii
don@cs.byuh.edu

Abstract

Students often learn best by doing, and they may learn programming skills best by writing many
programs, ranging from simple to complex. Overworked teachers can be dismayed by the prospect
of grading still more programs per student as well as teaching introductory classes with ever
larger enrollments. We consider GradeBot, an automatic grader for computer programming lab
assignments. Such an approach offers substantial advantages and opportunities, but also some
disadvantages and challenges. GradeBot evaluates student programs written in any of several
languages, including C, C++, Java, Perl, Tcl, and MIPS assembler. Guidance for similar projects
is provided through a discussion of the construction and operation of GradeBot.

Keywords: GradeBot, grading, programming, automation, testbed, C, C++, Java, Perl,
Tcl, MIPS, SPIM

1 Introduction

In our experience, when sophomore-level Com-
puter Science students are given one program-
ming assignment each week throughout the
semester, they are generally successful at that
pace of learning.

However, when inexperienced freshman-level
students from Computer Science and Informa-
tion Systems in a Programming I course were
assigned at the same pace, the results were not
good. (By show of hands, 80 to 90 percent of
each class claimed to have never programmed
before in any language.) Some students gave up
in frustration. Others in desperation acquired
“extensive unauthorized help” which did not re-
sult in actual learning of the assigned material.

It is believed that inexperienced students are
not successful with the pace of one program per
week because it forces them to learn and demon-
strate too much new material per program.
Rather than giving even fewer assignments, it
is felt that many more programs should be as-
signed, each demonstrating fewer new concepts.
Locally a move was made to better support the

students by assigning and grading five programs
per week instead of only one.

Although this seemed like the right thing to do
for the students (and still seems so), it presented
difficulties for the instructor. It created a huge
grading burden for which GradeBot became the
solution.

The thesis is that student learning in introduc-
tory programming classes can be effectively fa-
cilitated by the use of an automatic program
grader.

2 Motivations

The initial and most important motivation was
to support having students write more programs
with a smaller increment in difficulty from each
to the next. The desire was to do this with-
out hiring more teachers, or using more teacher
time.

Starting from the idea of using a robotic pro-
gram grader, a few other expected benefits were
identified: students would get faster responses



www.manaraa.com

to their program submissions, and distance-
education courses might be taught at remote
locations more easily.

More Programs Per Student: Robotic
grading would allow a move from 5 or 10 pro-
grams per student per semester toward a tar-
get of 75 programs per semester. Rather than
the steep learning curve of one program for
each topic, e.g., variables, if/else, loops, func-
tions, and arrays, one might have many more
programs, resulting in a more gradual learning
curve. Each new program could introduce only
one small concept rather than something larger.

More Students Per Teacher: With robotic
grading of most or all assignments and tests, it
seemed that faculty could be more productive
per contact hour by admitting more students
into each class and teaching larger sections. The
preparation time for a lecture promised to be
about the same whether there were 15 students
or 50 students.

Faster Response To Students: With a
robotic grader in place, students would be able
to submit their lab work and find out imme-
diately whether it was “correct” or not. This
seemed much better than collecting the pro-
grams in class on paper, or diskette, or sent by
email, or deposited in a folder on the campus file
server. Extensive hand grading was bad enough
but managing and returning all the work with
comments was also a burden.

Automatic Comments To Students: To
the extent the robotic grader could evaluate
student work, it might also identify and coach
in solving typical specific problems noticed for
each student, such as forgotten newlines or ex-
tra whitespace, sometimes much more patiently
and clearly than the instructor may have done.

No More Partial Credit: A happy side effect
of immediate response to students was the prac-
tical opportunity to require perfect programs
from the students. Rather than guess how close
they were to achieving the goal, they were sim-
ply told what test case led to their failure. They
were then left with the challenge of figuring
out why their program behaved wrongly in that
case.

Last-Mile Learning: By debugging their own

programs, students engaged in “last mile learn-
ing,” which is the learning that occurs when
you finally finish something, and do not merely
imagine that you have basically finished it. It is
sometimes said that “the devil is in the details.”
By confronting that devil true learning occurs.

Distance Education: It was imagined that
the introductory programming course could be
automated to such an extent that lectures could
be recorded on video and the entire course
could be delivered, conducted, and graded al-
most without human intervention. To make this
possible, programming assignments were sub-
mitted by students through the Internet, origi-
nally by email. Because email is the most ubiq-
uitous application on the Internet, this meant
that the course could theoretically be conducted
remotely to students anywhere so long as they
had email.

Open Entry, Early Exit: It was believed that
by using the Distance Education model, a tutor
could handle questions and an instructor would
be needed only rarely to resolve problems. Un-
der this model, it would be possible to let stu-
dents enroll at any time and complete at any
time, and not just from start to end of semester.
Assignment deadlines could be tailored to each
student’s personal timeline. This would allow
particularly challenged students to take more
than one semester to finish the class.

3 Grading Engine

In this section, the grading engine itself is con-
sidered. A progression of developments is pre-
sented here, showing how the grading engine de-
veloped to its current status.

3.1 Standard In, Standard Out

The original grading concept was to provide two
files for each test case. One would be the input
(standard in) for the program. The other would
be the desired output (standard out). The stu-
dent program would be compiled and executed.
If the compile failed, the student would be no-
tified. Otherwise the input file would be fed



www.manaraa.com

into the student program. The output results
would be collected. Finally the collected results
would be compared with the desired output. If
they were identical, the next test would ensue.
If there was a discrepency, the failed test case
could be revealed to the student so that a fix
could be prepared.

3.2 Helpful Responses

Rather than simply telling the student that
their program had failed, it was decided to re-
veal the actual test case that brought about that
failure. Students who particate in ACM pro-
gramming contests are very often not given the
final test cases, but it was felt this would be too
difficult for students in Programming I and II.

The unix diff command was used to compare
the student program produced output to the
desired “correct” output. The diff results were
translated into plain English and reported them
to the student, saying: “Your first error is on
line 5 of your output.” GradeBot might add
“Please check your spacing” or “Please check
your punctuation” if it could identify that as
the problem. Both the produced output and
the correct output would then be printed so the
student could compare.

There was some discomfort that this was grad-
ually giving away all the test cases to the stu-
dents, and the students could develop programs
that treated each test case as a special case,
hard-coding the output once the test case could
be recognized. It seemed unlikely that students
in the introductory classes would have this so-
phistication, but it was enough of an annoying
thought that it was addressed below with Ran-
dom Test Cases.

3.3 Infinite Loops

Infinite loops were foreseen as a problem from
the first. To deal with this, a timed execution
facility called timed-run was used. It was al-
ready present on our Linux system, and is part
of the expect package (Libes, 1995, p.17). Be-
cause the programs were simple and the pro-
cessor was fast, it was felt that a few seconds

should be enough clock time to do almost any-
thing. Therefore, execution time was limited to
two seconds in the general case. This has proven
to be ample for all but a few special programs.

Not foreseen were infinite loops with print state-
ments nested inside. The first occurrance was
a program that generated 100 thousand identi-
cal lines of output in the two seconds before it
timed out. It took an hour to email the results
back to the student. It was very amusing, but
a correction was sought immediately.

Two measures were adopted to cure the infi-
nite loop print problem. First, before mail-
ing identical lines were recognized and “com-
pressed.” Any time there were three or more
lines that were identical, only the first would be
returned, followed by a statement such as “the
next 183245 lines are the same.” This helped
for the infinite identical print problem, but was
not general enough.

The second measure was to look at the size
of the desired output and use it as a guide
for what was reasonable. It was decided that
if the desired output consisted of n lines, the
student would be allowed 2n+10 lines and the
rest would be counted and truncated. That
was a more satisfying response. In four years
there have been no further infinite emails, even
though they are still possible if a student pro-
duces a single line that is infinitely long.

3.4 Program Crashes

Another problem was the core dump files that
were created by student programs. Those were
discovered to take up a substantial amount of
disk space and to deal with them a nightly
“cron job” was set up to remove all core files
within the testing directory tree. This contin-
ued to be an important tool until the advent of
Interactive Dialog mentioned below, and is still
in use since it is more trouble to verify that it
was safe to dismantle it than to let it run.



www.manaraa.com

3.5 Machine Crashes

It was recognized that a clever and malev-
olent student could submit a program that
would crash the GradeBot server. In C,
while (1) fork(); would be such an exam-
ple. In our case such students can be identified
and handled because GradeBot keeps a history
of all submissions. If not, the input file could
be pre-screened to watch for specific constructs
such as the word “fork.” The bottom line is
that in four years there has been no need to
deal with this, and the plan is to deal with it
when it becomes a problem.

3.6 Creating New Labs

To keep the programs from becoming too well
known, with solutions too easily available, it
seemed important that labs could be created
and modified easily. Initially this proved to be
a lot of work, both for the detailed instructions
that were prepared for the students and for the
test cases that were prepared and verified by
hand.

Two realizations were helpful. First, there was
no need for most of the instructions to the stu-
dents since the test cases were in effect instruc-
tions, at least to a level we felt acceptable for a
first course. It was simple to augment the test
cases with a paragraph or two outlining the task
and report that back to the student as part of
the GradeBot response.

The second conclusion came with the Random
Test Cases issue.

3.7 Random Test Cases

Because students could in n tries discover all
n test cases being used (if there were a finite
number), and n was generally small for hand-
verified test data, it was seen as more efficient,
enjoyable, and reliable to code a prototype pro-
gram to perform the target task. This program
was then paired with a task-specific input data
generator. In rare cases the two were merged
into a single program.

Tcl/Expect, the language in which the bulk of
GradeBot is written, does not provide a native
random number generation facility. The follow-
ing procedure was developed to provide this ca-
pability.

# returns a 15-bit integer: 0..32767
proc random15 {} { global _R
set _R [expr $_R * 1103515245 + 12345]
expr int ( $_R / 65536 ) % 32768 }

As the prototype program ran, each time it
wanted input, a random number generator was
called to create the appropriate input. The in-
put was then saved for the student program
and also processed by the prototype program.
Each time the prototype generated output, it
was saved for comparision against the student
program.

The prototype program was then run a num-
ber of times, usually ten to thirty times. After
each run, the student program was compared.
If the outputs matched exactly, the process con-
tinued. If not, the offending input/output pair
was reported back to the student and the pro-
cess ended. If all the tests were passed, the
student was sent a congratulatory message and
the instructor was sent a completion message
for entry into the gradebook.

The following procedures were developed and
found useful for the creation of random inputs:

random(low,high) to return an integer uni-
formly distributed between low and high.

pick(list) to return a random element of the
list.

permute(list) to return a random permuta-
tion of the list.

rlog(low,high) to return a number between
low and high, uniformly distributed in the log
domain, that is, equally likely to be between 10
and 100 as between 100 and 1000.

random15 to return a 15-bit random integer
(0..32767).

As a measure of relative usefulness, out of 85
test programs in use last semester, random is
used 222 times, pick is used 132 times, permute



www.manaraa.com

is used 33 times, rlog is used 28 times, and ran-
dom15 is used (directly) 3 times.

3.8 Sample Test Program

Following is an annotated example of a lab as-
signment test program. This program is based
on a programming problem (chapter 1, problem
6) in Molluzzo (1996, p.22). Lines have been
shortened to fit this paper.

proc sim in { global lab; start
get "Type in four letters: "
put $in
set c3 [string index $in 2]
get "The third letter was $c3.\n"
runLog $lab [list sio [eof]] {st 0}

}

proc lab$lab {} { global lab errCt
sim "wxyz\n"; # free sample
if { $errCt } return; sim "abcd\n"
do 5 {
set ab "[pick a b c][pick d e f]"
set cd "[pick g h i][pick j k l]"
if { $errCt } return; sim "$ab$cd\n"
}

}

The entire sample shown above is stored as a
file in the lab directory for the cs101 course.
The file is sourced (read) into GradeBot when
the lab assignment has been identified.

The file contains two procedures, sim and
lab$lab. The sim procedure is intended to per-
form one complete test of the student program.
The lab procedure calls sim some number of
times to perform a variety of individual tests
of the student program.

With rare exceptions, test programs are written
in Tcl, the “tool command language” invented
and developed by John K. Ousterhout (1994)
that forms the basis for the expect utility men-
tioned above.

proc introduces a new procedure. sim is the
name of the first procedure. in is the sole for-
mal parameter to that procedure, and is passed
by value. Curly braces enclose the body of the

procedure. global introduces a global variable,
lab. All other variables are local. start calls
another procedure to prepare the input and out-
put capture routines.

Customary usage is to provide a sim routine
for each test program, and for its parameters to
be the varying elements of a test case. In this
example, the sole element of the test case is a
character string that will be presented to the
student program as input.

get specifies a string (in this case a prompt)
that must be presented by the student program.
In this case, the prompt is “Type in four let-
ters:” followed by a space but no newline.

put specifies a string that will be given as in-
put to the student program. $in is the formal
parameter, used as the source of information.

set is the assignment operator in Tcl. c3 is the
variable name (expressed as an lvalue). The
square brackets enclose another command that
will be executed, and whose results will be taken
to initialize the variable c3. string index is a
built-in command that will, in this case, extract
character number 2 (counting from zero) in the
string stored in the in variable.

get again specifies a string to be gotten from the
student program. Slash n indicates a newline
(carriage return).

The previous commands have prepared the
input-output script to be carried out. runLog
carries them out and reports the results.

The second procedure, lab$lab has a global
variable errCt. So long as this counter is zero,
testing continues. If errCt becomes non-zero,
testing will end and credit will be denied.

sim "wxyz\n" provides the free sample of input
and output the student will be shown to help
them understand the task. It is provided even
if the error count is non-zero.

The next simulation is provided only if the error
count is still zero. The second set of input will
be "abcd\n".

do 5 is a shortcut procedure unique to Grade-
Bot that means “perform this loop five times.”



www.manaraa.com

pick a b c will return one of those three let-
ters, each with a probability of 1/3. There are
81 possible strings that can be generated in this
loop. So long as errCt remains zero, additional
strings will be tried, up to a limit of five.

When the end of the lab$lab procedure is
reached with errCt still equal to zero, the stu-
dent will receive credit for completing the lab.

3.9 Worrying About Cheating

Some students were able to complete the labs
but were still unable to perform on program-
ming quizzes and tests given in class. Inter-
views with the department-provided tutors re-
vealed the unsurprising fact that students were
helping each other.

At first, the instructor response was frustra-
tion, upset, and indignation, but this did not
solve the problem. Entire classes were berated
as a group to eliminate this cheating. It did not
work.

There seemed to be two distinct elements con-
tributing to the forbidden behavior. First, stu-
dents seemed less upset about cheating in their
interactions with a machine than they would
interacting with a fellow human. Computer
games often have “cheat codes” that can be
downloaded. To them it is no big deal.

Second, as demonstrated by the 2001 GRE CS
Subject Test cheating scandal, in some cultures
there is a strong us-versus-them mentality relat-
ing students to teachers. Students are cultur-
ally expected to assist each other, even when
in defiance of instructor mandates. This cul-
tural issue was more difficult to work around,
and eventually the best solution seemed to be
the formal acceptance of group work as a valid
way to study.

3.10 An Age of Miracles

To identify cheaters, GradeBot incorporated a
complete history of all lab work ever submitted
by students. Each submission is converted into
a standard form by, for example, compressing
whitespace and removing string constants. A

checksum is taken of the resulting code. When
a student program completely passes a test, this
checksum is stored in a database. When a new
student program is submitted, this checksum
is compared with the database. If a match
is found, the full programs are compared. If
a match is still found, an incident report is
emailed to the instructor. The incident report
detailed the “miraculous” fact that two pro-
grams were identical.

The initial result was lots of email. It was con-
cluded that for a fairly simple lab, or for a
lab that represented only a small change from
sample code given in the textbook, the odds
of duplicate programs were quite high. This
was even true for programs that were explained
thoroughly in class by the instructor or in the
lab by the tuturs. Not all of this activity could
be called cheating.

The next step was to look at the predecessors
to any code match. For each match, the mira-
cle report was modified to list all the previous
submissions that had been received. If many
students shared the same code, generally there
was a structural reason for that. If only one or
two students shared the same code, it was much
more defensible to say that the students got it
from each other. Still, one incident was enough
to be cautious, but not enough evidence to be
pursuasive.

The next step was to modify the miracle report
to include past incidents of identical code. This
turned out to be very helpful. When student
A had code that was miraculously like student
B on one assignment, and C on another assign-
ment, and D on yet another assignment, it could
be attributed to the fact that there were a lim-
ited number of common ways to write the pro-
gram, given the students attended the same lec-
tures and visited the same tutors. But if student
A had code like student B on quite a few labs,
this indicated a fairly strong level of collusion.

3.11 Per Student Customization

Before the decision to lighten up on the appar-
ent cheating problem, GradeBot was modified
to allow each student to receive a similar but not
identical problem when compared to his neigh-



www.manaraa.com

bors. The goal was to provide better evidence
against cheaters because they could not use the
excuse that they were solving the same problem.
If identical inputs occurred, the source could be
identified and a punishment could be justified.

This provided an interesting diversion during
the development of GradeBot, but did not meet
its goal of better identifying and punishing of-
fenders. Recently developed test programs gen-
erally take no advantage of this feature.

3.12 Overcoming Cheating

The ultimate result of all the worrying about
cheating was a conclusion that technical means
could detect simple forms of copying, but effec-
tive police action could not be maintained be-
cause of the cultural desire to work together and
the ease with which students could modify their
copied work just enough to avoid being caught.
For these reasons it became easier to give up on
the labs and to rely on testing in a controlled
setting. A a large share of the final grade now
rests on in-class tests. Students are explicitly
permitted to do their lab work in concert with
anyone they want, but are reminded that one
important goal is the learning they will need to
demonstrate on the in-class tests.

3.13 Interactive Dialogue

Over time, the instructor was occasionally
shows examples of code that worked well enough
for GradeBot but was still wrong. The most no-
table example of this would be a program to ask
for a number, read it in, add one to it, and print
the result.

The student program could instead read in the
number, add one to it, and THEN ask for the
number and print the result. Using standard
in and standard out destroyed the interleaving
sequence between input and output. All inputs
could be read first, and then all outputs cre-
ated. But the intention of the instructor was to
have inputs and outputs interleaved in a more
reasonable fashion.

A major overhaul of GradeBot was conducted

to get away from the batch input/output model.
The new model was interactive dialogue.

Instead of comparing a whole output file, the
student program outputs were verified one line
at a time, as they were generated. Similarly,
the inputs were provided one line at a time as
they were needed. Finally the student could be
forced to prompt before reading the input.

An unexpected benefit of this approach was the
fact that infinite printing loops were no longer
a problem. At the first sign of trouble, the stu-
dent program was terminated and the remain-
ing dialogue was modeled for the student. Only
one line of errors was reported.

3.14 Throttle

GradeBot was built on a submit/reply model.
Students came to expect the reply within a sec-
ond or two. Occasionally there would be a pro-
gram which legitimately took longer than a few
seconds to run. In such a case, the student was
supposed to wait until the response came back.

Of course, students are about as patient as most
people. This means that when the answer did
not appear after five seconds, they would as-
sume the program did not submit properly, and
would submit it again.

It was discovered that a single student could
submit a long-running lab perhaps dozens of
times, and GradeBot would dutifully try to run
them all simultaneously. This would make the
response time even slower for everyone, and
eventually led to very long delays. Finally, the
original student would get back several replies
over a span of several minutes. Most of the
replies were redundant.

This would happen a lot toward the end of the
semester, as students were frantically trying to
complete as many projects as possible before
the deadline.

To solve the problem, GradeBot creates a “lock”
(implemented as a zero-length file) when a stu-
dent program starts being processed. If a sub-
sequent request is received from the same stu-
dent, it also creates a lock. As long as the new
lock is not the oldest lock, GradeBot sleeps a



www.manaraa.com

few seconds and checks again. Finally, the new
test runs and the lock is deleted. Additionally,
if GradeBot decides to sleep, it sends an email
back to the student stating that GradeBot is
still testing a lab that the student previously
submitted, and as a matter of policy the labs
will be done one at a time.

This resolved most of the difficulty from dupli-
cate requests.

4 Grade Management

Part of the model for GradeBot was a video
game model. In this model, players complete
a “level” and then move on the beat the next
level. The intention was that as each program
was completed, the student would be emailed
some encouragement along with the challenge
to complete the next lab.

This encouragement was provided in the form
of a Status report listing all the labs completed
and pending, and giving the student a projected
grade for the course (at the current rate of
achievement).

Initially students were guaranteed a grade of A
once they reached 930 points (93%). Students
would even try to complete labs after they took
the final exam, just to get their total points up
to the next level.

The status report was very successful and en-
couraging the fast students. It was also very
successful at alerting the slow students to the
fact that they were falling behind.

4.1 Variable Due Dates

As mentioned above, due dates can be cus-
tomized per student. This was intended to allow
each student to have his own timeline for com-
pleting the course. In practice it has been used
to relax the timeline for a student who became
ill or was traveling as part of a sport team. It
is a little-used feature.

4.2 Counting Attempts

Initially it was thought that students should
be graded partially by the number of attempts
that were taken before the program was correct.
Accordingly, GradeBot counts each attempt.
However, the students expressed a great deal
of gratitude that they were allowed unlimited
submits. The best reason for limiting submits
is to save the time of the grader, but this reason
is not relevant in the GradeBot world. Another
reason is to encourage students to do their own
testing. For most of the students, we were de-
lighted that they would get the work done and
did not feel any strong need to threaten them
by taking off points for each extra submission.
It is a little-used feature.

Some high-achiever students do take a certain
pride in solving a problem within some small
number of submits. We do report on each sub-
mit how many previous submits have been pro-
cessed for this student.

4.3 Testing Center Integration

We have the good fortune to have a university-
sponsored testing center. Here we can deposit
bubble-sheet tests for student to take at their
convenience. We can also attach through tel-
net and download the student scores. This has
proven to be very beneficial, as we were able to
include testing center activities as part of the
status report.

4.4 Student Status Reports

The student status report for any given stu-
dent lists all the assignments for which they can
earn credit. For each assignment, the assign-
ment name is given, together with the points
earned or still available, and the date on which
the points were earned or on which the assign-
ment is due. A brief description of the assign-
ment is also given. For tests, the test score is
also shown. The status report is presented in a
tabular form with one row per task.

In addition to the details for assignments, there
is a header and a footer. The footer summa-



www.manaraa.com

rizes the dates for that student, including the
deadline for the final exam and the last day on
which work can be submitted.

The general approach to late work and due
dates is that each assignment should have a due
date, but it should be soft in the sense that
when a student misses that date, they can still
turn in the work a day later for a small penalty
in points earned. The approach currently used
is to take off one point per day late, up to a
maximum of 40 percent off. Late work is al-
ways worth at least 60 percent of full credit,
until the end of the semester.

At the top of the status report, the course grade
for the student is forecast based on the student’s
performance on assignments completed and as-
signments due yet uncompleted. The projected
score for unfinished assignments is based on the
percentage performance for completed assign-
ments of that type, together with a penalty for
projected late work or work estimated to be
completed too late to be turned in for credit.

Projected scores for all students are kept in a
separate file, and each time a status report is
prepared, the score is compared to that file to
determine the rank of that student. For stu-
dents in the top half of the class, the status
report includes their rank, such as “your rank
is 3 out of 21 students.” For top students, this
is another motivator as they seek to be number
one in the class. For students below the top
half, this was believed to be a non-motivator
and was therefore not presented.

4.5 Teacher Status Reports

The teacher of each class receives several daily
status reports summarizing the performance of
the students in his class. One report shows
the labs completed in grid form, with students
listed down the side alphabetically and labs
listed across the top chronologically. At a glance
the teacher can tell which students are working
ahead, and which students are selectively skip-
ping labs.

Another report shows the activity level for each
student across the past three weeks, on a grid
that is filled in with the number of submits done

per day, if any. At a glance the teacher can tell
who has stopped working.

5 Web Interface

To make a faster start each semester, a web
interface (sometimes called WebBot) was de-
signed and implemented for GradeBot. The
web interface has become so popular that stu-
dents do not discriminate between the interface
and the grading engine. It is all the same to
them.

5.1 Before The Web

Before the web interface, the first week or two
of class was spent getting students to log in and
learn how to use a text editor, typically emacs.
Then they learned how to email their submis-
sions to GradeBot and how to receive the re-
sponses. This was frustrating to the teacher
because it took so long before students could
start to experience the excitement of getting
work done and seeing their projected grade.

5.2 A Faster Start

The web interface was envisioned as a faster
start. Students would be able to submit pro-
grams on the first or second day using famil-
iar html forms with textareas and drop-down
menus. The web interface was an incredible suc-
cess.

5.3 A Rich Menu

to be added

6 Routine Maintenance

to be added



www.manaraa.com

6.1 Per Semester

to be added

6.2 Per New Lab

to be added

6.3 Per New Server

to be added

6.4

GradeBot represents a case study of such facil-
itation efforts. It is set forward, together with
observations about its effectiveness, the oppor-
tunities it creates, and the difficulties that oc-
cur. The project is deemed a success, and is
believed to improve learning for most students,
while using faculty resources more efficiently,
but some difficulties remain.

A computer program grader is itself a computer
program designed to evaluate student work in
computer programming classes. Use of such a
grader can allow the faculty member to be both
more efficient and more effective.

For us, the typical first class enrollment is
about 200 students per year, but upper division
courses typically have enrollments closer to 20
students per year. Nearly all the attrition was
between the first and second class.

My goal was to make the introductory class
more of a “pump” and less of a “filter.” A pump
is a class the attracts students into the major
and pushes them forward toward completion. A
filter is a class that weeds out the students who
are unlikely to be successful within the next few
years. I felt that the first class was too early a
time to be filtering students in all but the most
obvious cases.

To feel successful, a student must earn a good
grade and feel that the grade is legitimate. The
student must feel mastery of the course mate-
rial. For a few students this mastery comes

almost without effort, as though by gift. For
most of our students, this mastery comes after
a mightly struggle.

To aid their success, we have staged this strug-
gle as the conquest of a number of small pro-
gramming assignments. We have tried to take
small steps because the larger steps become
stumbling blocks for most students. But smaller
steps mean that there must be more of them.
We do not feel comfortable having one program
for each topic, e.g., variables, if/else, loops,
functions, and arrays. The best students would
be fine with such an approach, but we are trying
to reach the rest of the students.

(It may prove that this effort is misguided, and
the students we retain simply drop out later,
thus wasting more of their own time as well as
slowing down the natural achievers.)

7 Instructor Experiences

GradeBot was used by its designer in his
courses, but over time other teachers were co-
erced into using it because they taught the in-
troduction to programming class. It is typical
that the designer and developer of a tool find
it convenient and easy to use while others may
not enjoy the same experiences. This section
explores some of their experiences.

...

8 Thesis

9 Clueless

“I hear and I forget, I see and I remember, I do
and I understand.” — Confucius

I teach programming. I probably started out by
explaining to students. This is how to write a
program. This is how to design useful variable
names. See the glorious symmetry of “if” and
“while.” Appreciate the wonders of call by value
and call by reference. That was the way that
I remembered my own introduction to comput-



www.manaraa.com

ing. When I tried it in the classroom, the stu-
dents all watched with eager eyes and smiled in
appreciation. Then came the first test. Most of
them had no clue what I was talking about.

Brigham Young University Hawaii has a largely
international student body, drawing many stu-
dents from Asia and Polynesia and less than
half from the US mainland. Based on a show
of hands at the start of each semester, eighty
percent of students entering either the Com-
puter Science major or the Information Sys-
tems major here report that they have never
programmed before. Fifteen percent report
one previous programming class (usually in Mi-
crosoft Visual BASIC) but assert that they re-
ally do not remember much. Five percent have
more substantial experience.

There are many approaches to teaching com-
puting. “Computing Curricula 2001 Computer
Science” (Chang, et al, 2001) mentions in its
overview of curricular models (chapter 6) the
following introductory course approaches: Im-
perative first, Objects first, Functional first,
Breadth first, Algorithms first, and Hardware
first. In section 7.2 it states: “One of the most
hotly debated questions in computer science ed-
ucation is the role of programming in the intro-
ductory curriculum.”

We have adopted the “Programming first” ap-
proach for our CS and IS majors based on the
belief that most of our students will not really
understand anything until they have some pro-
gramming experience. Our approach is to get
students programming early in the hope that
later we can address principles of software en-
gineering and correct any habits that need im-
provement.

Large projects tended to overwhelm my Pro-
gramming I students. Things may look easy
when the instructor demonstrates, but when the
students try it later, they find themselves lost.
I decided to focus on teaching programming by
giving lots of small programming assignments.

After collecting the first assignment and grading
it, several things were clear to me. (1) Grading
takes a lot of time. (2) I was using the same
test cases over and over again. (3) Most of my
time was spent reading broken programs and
assigning partial credit based on how close the

student seemed to be to solving the problem.

I automated my testing by creating input and
output files. Each student program would be
fed each input file. Output would be collected
and compared to the standard. Correct out-
puts would match. Incorrect outputs would not
match. Redirected input and output were cob-
bled together into a script (batch file).

c:\> stuprog < input.1 > output.1
c:\> stuprog < input.2 > output.2
c:\> stuprog < input.3 > output.3
c:\> diff output.1 correct.1 >> err
c:\> diff output.2 correct.2 >> err
c:\> diff output.3 correct.3 >> err

This approach worked well for correct programs.
I could quickly determine that they were correct
enough to satisfy me. But this approach did
not work well for incorrect programs. I was still
forced by my teaching ethics to examine each
student’s program and assign some amount of
partial credit.

At some point I came to several conclusions. (1)
Substantial learning occurs in the “last mile” of
programming and debugging toward making a
program work. (2) Students whose programs al-
most worked did not get this “last mile” learn-
ing. (3) I could save a lot of my personal time
by automating the grading process such that
the students could check their own work.

My idea was to prepare a grading testbed and
let each student test his own program. Stu-
dents should see their errors immediately so
they could continue debugging. Students should
see their errors without my intervention, so my
time would be free for other needs.

10 Disadvantages in Ad-
vance

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;
– Robert Frost



www.manaraa.com

Before ever building the project, I was aware of
several disadvantages. In my zeal I felt those
were far outweighed by the advantages I hoped
to gain. In retrospect I am no longer sure. A
properly designed experiment would use a con-
trol group and measure the difference in perfor-
mance, but some things are just not practical.

10.1 Graphics

My approach handled input and output in the
traditional channels. It did not comfortably
support graphics. Some of my colleagues are
very excited by the use of graphics, particu-
larly in languages like Visual BASIC and Java,
to stimulate student interest. Male students in
particular may be motivated by a desire to cre-
ate video games. These generally involve a lot of
graphics. Grading is also made easier for graph-
ical programs because the expected behavior of
the program can be readily observed.

I still have no idea how to automate the grading
of graphical outputs in any useful way.

Even though GradeBot does not evaluate
graphical output, there is nothing to require
that all labs use GradeBot. Indeed tests are
already outside the robotic grading system and
graphical programs could be graded outside the
robotic system as well.

10.2 Interaction

My initial approach provided all inputs through
STDIN, as though they were typed from the
keyboard while wearing a blindfold. Similarly,
all outputs were captured as though they were
printed and then taken away to be compared.
This works adequately for many programming
tasks, but I found it frustrating when there was
to be some sort of dialog between the student’s
program and its user. This problem was even-
tually solved.

10.3 Developing Test Cases

It is important for students to develop their own
test cases for the programs they write. Grade-

Bot subverts this objective by providing all the
test cases needed to earn credit.

To some extent, this is good for new students.
A student writes a program. GradeBot finds
a test case that breaks the program. The stu-
dent finds and corrects the bug. GradeBot finds
another problem. The process spirals outward
from the most straightforward test cases until
we reach the more obscure test cases. Students
develop an appreciation for the fact that there
could still be one more bug lurking in some ob-
scure situation that they have not yet consid-
ered.

In the case of advanced students, GradeBot can
be seen to simply perform a set of black-box
tests. The student should be the one who is
constructing white-box test cases. Test cases
should use knowledge of the boundary condi-
tions that exist in the student code.

Canned test cases are thus a mixed blessing.

11 GradeBot Version 1.0

Accordingly, I undertook to automate the pro-
cess. At first I was spending days automating
a task that formerly took hours, but it was en-
joyable work and I persisted.

The first thing that I automated was the sub-
mit/reply process. Because it made sense to me,
I organized it so students would send an email
message to a special address. The subject line
would identify the program to be graded. The
body of the message would be the source code.

Upon receipt, the program would be extracted,
compiled, and tested against the canned inputs
and outputs. The results (output differences)
would be emailed back to the sender (the stu-
dent) and to me. If the results were perfect,
the student would receive credit for the work.
If not, the student was required to correct their
program and resubmit until it became perfect.

This solved the “last mile” learning problem for
me. It also got rid of partial credit grading. And
importantly it allowed the students to submit
their work at any time, day or night, and get
immediate feedback.



www.manaraa.com

It also allowed me to simplify my assignments.
Rather than describing the output in excruci-
ating detail, I simply assigned to students to
“make it work.” Variations in spacing were
caught by my robotic grader and returned to
the student. Students complained because the
spacing had to be exactly right, but I countered
that when you are printing checks (for instance)
or anything on preprinted forms, spacing had to
be perfect. I also pointed out that the end user
often wants to control the exact appearance of
the output but does not care about how the an-
swer is generated. My robot was acting like a
typical user, but was much more patient.

The students continued to have a love-hate rela-
tionship with the robot. They loved the fact it
was available 24 hours a day, seven days a week.
They loved the fact that they could fix their
mistakes and try again for full credit. They
hated the fact that “close” was no longer good
enough, and they had to achieve that “last mile”
learning. I continued to smile with delight that
things were working out so well.

12 Revealing Answers

Part of the brilliance of my scheme was the fact
that I did not have to explain in detail why their
code was wrong. I could simply point out a
sample input and output that failed and say,
“your program did this, but it should have done
that instead.” I did not have to say “you should
have used a loop here,” or “you are clobbering
your variable over there.” The early version of
GradeBot sent back (1) the original program,
(2) the input that was given, (3) the output
that was expected, and (4) the output that was
actually received.

I felt it was necessary to tell them where their
program failed by giving an example of that fail-
ure. This created a challenge for my scheme
because students could program the answers in-
stead of the process. If input is x, print answer
y. No calculation was necessary.

I moved to the next step: random inputs. In-
stead of having a set of canned inputs and out-
puts, I decided it was important to generate
random inputs (within certain ranges). I ac-

complished this by writing a “correct” version
of the program in order to turn random inputs
into the correct outputs. I also had to customize
the random inputs for each problem so that the
test cases were reasonable.

By doing this I escaped from the problem of
memorized answers. I could create practically
an infinite number of test cases, which was far
more than the student could program by “spe-
cial case” logic. Students were forced to actually
write the programs assigned.

13 Cheating

Student programs were not reviewed by human
eyes in every case. As time went on, programs
were examined less and less frequently. I started
to suspect problems with plagiarism.

I took three distinct approaches to this problem,
two of which failed and one of which continues
in use.

First, I keep a copy of each program ever sub-
mitted. As each new program was submitted,
I did a compare with past work for that same
task. If any programs were identical, I was no-
tified.

Second, I customized many problems to indi-
vidual students. George might be assigned to
print the numbers from 1 to 10. Fred might be
assigned to print the numbers from 1 to 100.
George might have numbers right justified in
a field of width 4. Fred might have numbers
left justified. This added weight to plagiarism
charges since the correct programs could not
have been the same.

Third, I gave in-class programming tests sev-
eral times each semester. The tests were closed-
book and closed-notes, but consisted of simple
problems (easy to write if you had been paying
attention and doing your lab work instead of
copying, and also quick to grade).



www.manaraa.com

13.1 Comparing for Duplicates

There is a technological problem in comparing
a new submission to a large body of prior work.
I took several steps to make this managable.
First, I restricted my attention to submissions
for the same problem. Second, I restricted my
attention to successful (final) submissions for
the same problem. Third, I decided to calculate
a checksum for each submission and store it in
a database. If the checksum matched, then I
would do the full check. The checksum proved
to be the most efficient approach, reducing a
order(n-squared) problem down to order(one).

At first, I got a lot of matches with previously
submitted programs. Many of these could be
explained by a few natural factors. (1) A simi-
lar program was in the textbook, so the student
did a copy and modify. This was acceptable. (2)
The teacher (myself) gave a similar program as
an example in class. (3) The program had a nat-
urally common solution. For instance, although
there are many was to print the numbers from
one to ten, this one is fairly popular.

for ( i = 1; i <= 10; i++ ) { print i }

I compensated by eliminating problems that
had one typical answer. I also started reporting
the authors of the programs that matched. If
the instructor was on the list, or the tutor was,
or lots of people had the same program, I ig-
nored it. I focused in on cases where the same
student A seemed to be copying from the same
student B consistently.

Another problem that the reader may have no-
ticed is the ease with which a student could
make minor changes in a program before sub-
mitting it. I handled this by making several
normalizations to the program before doing the
comparison. First, I removed all white space
and comments. Second, I removed all quoted
strings. Third, I expanded #define statements
(for C). This allowed me to catch a large num-
ber of questionable submissions, but it was still
trivial to change a variable name or reverse two
lines of the program. The ease of making such
changes made it discouraging to try to compen-
sate for all of them. On the other hand, the
students most likely to cheat by plagiarism are

also the ones most likely to do a bad job of
it; those clever enough to cover their tracks are
probably clever enough to do their own work.

I actually identified, documented, and prose-
cuted several cases before the Honor Code com-
mitted for plagiarism. But it took a lot of effort
for marginal returns and I got tired of it. I also
discovered that students like to work together.
It is a social thing for many of them even though
it was not for me. This led to lots of false pos-
itives. Eventually the key thing was whether
they learned the material. As this was reflected
on the exams (I called them midterms), I de-
cided to ease up on the cheating.

13.2 Customized Tasks

The customization of tasks to individual stu-
dents is still working and used for some problem
sets, but I do not feel that it is producing any
powerful results. I have left it alone and not
added this feature to any new assignments.

13.3 Exams

I use my exams largely as a verification that
the students can perform at a level indicated
by their lab work. Generally I can grade an
individual problem in ten seconds or less be-
cause of their simplicity. Here is an example of
a typical problem from the first midterm in the
Programming II class.

Sample Problem: Read lines from STDIN un-
til you get a blank line. On each line is a num-
ber (e.g., 13 or 98.6). There will be at least one
number. Report (a) how many numbers were
read, (b) what is their total, (c) what is their
average. Do not use any kind of array. Use a
small, constant amount of storage.

There was still trouble, however. I had a few
students who did incredibly well on the lab as-
signments, but failed miserably on the exams.
I followed up on one outstanding case (scoring
90% or better overall, but scoring about 10% on
the final) and was told by the tutors that this in-
dividual would badger people for help until they
gave him a bit. Eventually he would wheedle a



www.manaraa.com

whole program out of his unwilling accomplices.
But he could not perform on the test.

Because of this and similar problems with a few
students, I instituted a grading policy that re-
quired a certain final exam grade to earn a cer-
tain overall course grade. For instance, to earn
an A in the class, you must earn at least a B
on the final. To earn a D- in the class, you
must earn at least a 20% on the final. I have
been very pleased with this approach and it has
allowed me to worry less about the possible ex-
cessive teamwork outside of class.

14 GradeBot 2.0: Interac-
tive

A few weeks after GradeBot 1.0 was unleashed
on an unsuspecting student body, one clever
student succeeded in submitting a program that
contained an infinite loop. I had planned for
this. Programs were only allowed to execute for
two seconds before being terminated. However,
this loop contained a print statement. 80 thou-
sand lines of output later, his program had been
terminated and the results were being emailed
back to the student. Do you have any idea how
long it takes to email 80 thousand lines? It
took about an hour. I immediately installed a
patch to remove duplicate lines (counting them
of course). Later I restricted the email to 2n
lines, where n is the number of lines that were
expected. But these were stopgap measures.

The real solution came when I rewrote Grade-
Bot in expect. Expect is a Tcl add-on that is
optimized for dialogs between programs. You
say this. I say that. You say this. I say that. I
revised my entire suite of programs away from
the STDIN / STDOUT model into a get/put
dialog model.

Under the new model, GradeBot engaged the
student program in a dialog. One line at a time,
input was fed in and output was accepted back.
Everything was logged for the user. At the first
failure to get the expected output, the user’s
program is terminated and the expected output
is logged together with a suitable error message.

Although I was not trying to solve the excessive

output problem, it came as a delightful side ef-
fect. Another nice side effect was the almost
complete disappearance of core files left over
from crashed student programs.

There was a downside, though. The new model
did not support “end of file” as an input to a
program. Once the end of file was sent, expect
refused to accept any further output from the
student’s program. As a result, programs which
must be tested for end of file handling still use
the batch STDIN/STDOUT features of Grade-
Bot 1.0.

15 GradeBot 3.0: On the
Web

Maybe this should be described as GradeBot 2.5
because the underlying engine did not change.
The only thing that is new is a web interface for
students.

The web interface was motivated by the fact
that the first two weeks of each semester were
taken up in teaching the students to use a pro-
gramming editor (I used emacs, I allowed vi)
and how to submit their work and retrieve their
results. We got through it but the delayed grat-
ification was frustrating. I wanted to be able to
write programs the first day, or at least the sec-
ond.

With the web interface, students entered their
programs into a textbox in a browser. After
pressing the submit button, a CGI program ran.
This program, named WebBot, simply acted as
a front end to GradeBot. It organized the sub-
mission and passed it along through traditional
means (i.e., by email). GradeBot responded by
email and WebBot displayed the results in the
browser window.

The WebBot interface was implemented by a se-
nior student and has been very popular with the
students. Over time we have recognized some
advantages and disadvantages to the web inter-
face:

Advantage: The students can write programs
on the first or second day.



www.manaraa.com

Advantage: The students do not need to learn
any special purpose commands for joining a
class or seeing a report of their labs completed.
These can all be handled through buttons on
the web interface.

Disadvantage: Students are unable to invent
and test their own programs. They are re-
stricted to the small list of programs that
GradeBot knows about.

Disadvantage: Students do not even begin to
test their own programs. They type and press
submit.

Disadvantage: Students do not become famil-
iar with the command line interface or with a
programming text editor.

Our evaluation of these advantages and disad-
vantages is that for Programming I, for the typi-
cal student, the advantages are compelling. The
advanced student can be sent to the tutors to
learn the command line interface and how to
write and test his or her own programs. How-
ever, several weeks into Programming II we in-
troduce the command line interface and pro-
gramming editors and force the students to be-
come familiar with them. We then allow stu-
dents to use whichever interface they find most
convenient for the task they have.

References

Chang, Carl, Peter J. Denning, James H.
Cross II, Gerald Engel, Robert Sloan, Doris
Carver, Richard Eckhouse, Willis King,
Francis Lau, Susan Mengel, Pradip Sri-
mani, Eric Roberts, Russell Shackelford,
Richard Austing, C. Fay Cover, Gordon
Davies, Andrew McGettrick, G. Michael
Schneider, Ursula Wolz (2001). “Comput-
ing Curricula 2001 Computer Science,” Fi-
nal Report, 15 Dec 2001. Jointly published
by IEEE-CS and ACM.

Libes, Don (1995). Exploring Expect.
O’Reilly. ISBN: 1-56592-090-2.

Molluzzo, John (1996). C for Business Pro-
gramming. Prentice-Hall. ISBN: 0-13-
482282-X.

Ousterhout, John (1994). Tcl and the Tk
Toolkit. Addison-Wesley. ISBN: 0-201-
63337-X.


